

Programa de Asignatura

I. IDENTIFICACIÓN Carrera o Programa: Ingeniería Civil Industrial.

Unidad responsable: Escuela de Ingeniería

Nombre de la asignatura: Diseño de Sistemas Digitales

Código: ECIN-00404

Semestre en la malla1: VI-VII-VIII - IX

Créditos SCT - Chile: 5

Ciclo de Formación	Básico	Profesional	x	
Tipo de Asignatura	Obligatoria	Electiva	х	

Clasificación de área de Conocimiento²

Área: Ingeniería y Tecnología

Sub área: Ingeniería eléctrica, Ingeniería electrónica Informática

Requisitos

Pre - Requisitos:

Programación Orientada a Objetos

Requisito para:

 Arquitectura y Organización de Computadores

II. O	RGANIZAC	IÓN SEN	NEST	RAL							
Horas De (Cronoló	dicación Se gicas)	emanal	100000000000000000000000000000000000000	enci irecta	4,5		Traba Autór mo		3	Total	7,5
Detalle Horas Directas	Cátedra	Ayuda	ntía	Labo	rator	Talle	er	Te	rreno	ιρ. ínica	Supervisi
	3,0	1,5									

¹ Este campo sólo se completa en caso de carreras con programas semestrales.

² Clasificación del curso de acuerdo a la OCDE

III. APORTE AL PERFIL DE EGRESO

La asignatura contribuye a los dominios 1. Conocimiento Científico y Disciplinario 2. Habilidades y Actitudes Personales y Profesionales, 4. Habilidades para la Práctica de la Ingeniería.

Al finalizar la asignatura las y los estudiantes serán capaces de aplicar la teoría y técnicas de los sistemas digitales para analizar, diseñar, construir y evaluar diversas máquinas digitales combinacionales y secuenciales.

IV. COMPETENCIAS

La asignatura despliega las siguientes habilidades:

- 1.2. Aplicar conocimientos de ciencias de la ingeniería a la solución de problemas complejos de ingeniería.
- 1.3 Aplicar conocimientos, métodos y herramientas con un enfoque sistémico en planificación y control estratégico, levantamiento y análisis de procesos, administración de inventarios, control de gestión, basándose en simulación, modelamiento y optimización, con el empleo de tecnologías de información y comunicaciones para resolver problemas complejos de gestión en ingeniería.
- 2.1 Identificar, formular, modelar y resolver problemas complejos de ingeniería considerando las interacciones y la dinámica de las variables.
- 2.5 Actuar según principios de carácter universal que se basan en el valor de la persona y en su pleno desarrollo inclinándose a la realización personal, sentido de justicia, responsabilidad social y equidad.
- 4.3 Concebir sistemas para gestionar las operaciones, la calidad y confiabilidad y la cadena de abastecimiento, generando valor a las organizaciones, orientado por el uso eficiente del capital humano y recursos
- 4.4 Diseñar sistemas para gestionar las operaciones, la cadena de abastecimiento, la calidad y confiabilidad, orientado por el uso eficiente del capital humano y recursos.

Dirección General de Pregrado

V. RESULTADOS DE APRENDIZAJE

- 1. Identificar diferentes sistemas numéricos y tipos de codificación de la información que permitan detectar y/o corregir errores en su transmisión.
- 2. Representar un problema mediante un conjunto de sentencias como una expresión de Boole.
- 3. Diseñar un circuito combinacional.
- 4. Diseñar un circuito secuencial sincrónico.
- 5. Evaluar un circuito digital.
- 6. Analizar las relaciones causa efecto de los procesos en estudio.
- 7. Identificar los objetivos y requerimientos de las soluciones TIC
- 8. Realizar el modelamiento del diseño de la solución.

VI.	ÁREAS TEMÁTICAS					
1.	MUNDO DIGITAL					
1.1	Electrónica Digital					
1.2	Variables y parámetros de un circuito eléctrico					
1.3	Leyes de ohm y Kirchhoff					
1.4	Semiconductores					
1.5	Sistemas Numéricos					
1.6	Conversión de bases					
1.7	Complemento					
1.8	Operatoria					
1.9	Codificación de la Información					
2.	ALGEBRA DE BOOLE Y TÉCNICAS DE SIMPLIFICACIÓN					
2.1	Tablas de verdad y representación de sentencias					
2.2	Realización física de funciones					
2.3	Postulados y teoremas del álgebra de Boole					
2.4	Minimización de funciones Booleanas					
2.5	Simplificación por medio de mapas					
2.6	Simplificación por métodos de tabulación					
3.	LOGICA COMBINACIONAL					
3.1	3.1 Elementos físicos					
3.2	3.2 Análisis y diseño de circuitos combinacionales					
3.3	3.3 Funciones de lógica combinacional					
3.4	3.4 Dispositivos lógicos programables					

Dirección General de Pregrado

4.	LÓGICA SECUENCIAL
4.1	Introducción
4.2	Unidades de memoria
4.3	Circuitos secuenciales sincrónicos
4.4	Análisis de circuitos secuenciales
4.5	Diseño de circuitos secuenciales
4.6	Aplicaciones de lógica secuencial con dispositivos lógicos programables
4.7	Memorias
4.8	Interfaces

VII. ORIENTACIONES METODOLÓGICAS

- La metodología a desarrollar en esta asignatura debe favorecer la interacción entre las y los estudiantes a través de trabajos prácticos colaborativos que permitan la solución a problemas específicos contextualizados a la asignatura.
- Se sugiere el uso de clases expositivas y participativas con método combinado, es decir, clases expositivas con alternancia de trabajos en grupo de corta duración para responder preguntas.
- Se sugiere la utilización de la metodología activa de análisis de casos para desarrollar experiencias que permitan incorporar los elementos teórico-prácticos asociados a los resultados de aprendizaje de la asignatura.
- Las experiencias de cátedra/laboratorio/taller deben ser realizadas por medio de la utilización de software moderno aplicable a la asignatura.
- Se recomienda que las y los estudiantes realicen presentaciones periódicas sobre el trabajo realizado que incluya: contextualización, desarrollo y conclusiones.
- Actividades prácticas recomendadas: cápsulas teóricas, reuniones de trabajo, taller de trabajo en equipo y liderazgo, presentaciones e informes escritos de avance en español, revisión del estado del arte asociado al problema, lluvia de ideas, análisis de alternativas y descripción detallada de la solución.

VIII. ORIENTACIONES Y CRITERIOS PARA LA EVALUACIÓN

Dirección General de Pregrado

La evaluación de la asignatura está basada en:

- 1. Se recomienda la aplicación de una evaluación diagnóstica al inicio de la asignatura.
- 2. La asignatura podría contemplar dos instancias de evaluación de los resultados de aprendizaje: cátedra y taller/laboratorio.

En el caso de existir, ambas debieran ser aprobadas por separado: el porcentaje de cada una de ellas deberá ser de 60% para cátedra y 40% para taller/laboratorio. En el caso que la asignatura tenga actividades de taller/laboratorio, éstas deben ser realizadas en grupos de estudiantes y se recomienda la elaboración por parte de los estudiantes de un informe sobre la actividad desarrollada.

- 3. Se evaluará el conocimiento conceptual y procedimental mediante el desarrollo de al menos dos pruebas sumativas de carácter presencial.
- 4. Se recomienda además la aplicación de una evaluación mediante la entrega de un trabajo desarrollado en las horas indirectas asociadas a la asignatura.
- 5. Se recomienda que las y los estudiantes realicen una o más presentaciones de los trabajos realizados, la evaluación de la misma debe ser por medio de la aplicación de una rúbrica.
- 6. Se recomienda realizar evaluaciones de carácter formativo. Esto permite al docente introducir correcciones, añadir alternativas y reforzar los aspectos para ayudar al estudiantado en el logro de sus habilidades.
- 7. La asistencia y condiciones de aprobación de la asignatura debe ser acorde a la aplicación del Reglamento de Docencia de Pregrado

IX. RECURSOS BIBLIOGRÁFICOS

Bibliografía Mínima

- Malvino A. (2007). Principios de Electrónica (7a ed.). McGraw-Hill
- Floyd T. (2006). Fundamentos de Sistemas Digitales (9a ed.) (ISBN 10: 848-32-2085-7). Pren-tice Hall.
- Morris M. (2003). Diseño Digital (3a ed.) (ISBN 10: 970-26-0438-9). Prentice Hall.

Bibliografía Complementaria

- Morris M. (2005). Fundamentos de Diseño Lógico y Computadoras I (3a ed.) (ISBN 10: 842-05-4399-3). Prentice Hall.
- Tocci Ronald J. (2006). Sistemas Digitales: Principios y Aplicaciones (10a ed.) (ISBN

10: 970- 26-0970-4). Prentice Hall.